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In recent years, multivariate optimization has played an increasing role in analytical method

development. ICH guidelines recommend using statistical design of experiments to identify the design

space, in which multivariate combinations of composition variables and process variables have been

demonstrated to provide quality results. Considering a microemulsion electrokinetic chromatography

method (MEEKC), the performance of the electrophoretic run depends on the proportions of mixture

components (MCs) of the microemulsion and on the values of process variables (PVs). In the present

work, for the first time in the literature, a mixture-process variable (MPV) approach was applied to

optimize a MEEKC method for the analysis of coenzyme Q10 (Q10), ascorbic acid (AA), and folic acid

(FA) contained in nutraceuticals. The MCs (buffer, surfactant–cosurfactant, oil) and the PVs (voltage,

buffer concentration, buffer pH) were simultaneously changed according to a MPV experimental design.

A 62-run MPV design was generated using the I-optimality criterion, assuming a 46-term MPV model

allowing for special-cubic blending of the MCs, quadratic effects of the PVs, and some MC-PV

interactions. The obtained data were used to develop MPV models that express the performance of

an electrophoretic run (measured as peak efficiencies of Q10, AA, and FA) in terms of the MCs and PVs.

Contour and perturbation plots were drawn for each of the responses. Finally, the MPV models and

criteria for the peak efficiencies were used to develop the design space and an optimal subregion (i.e.,

the settings of the mixture MCs and PVs that satisfy the respective criteria), as well as a unique optimal

combination of MCs and PVs.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Multivariate optimization is playing an increasing role in analy-
tical method development. In the context of ‘‘quality by design’’ (in
which quality is designed into products and methods), ICH guide-
lines [1] recommend using statistical experimental design, model-
ing, and optimization methods to identify a design space. The design
space is the region of the experimental space where multidimen-
sional combinations of mixture components (MCs) and process
variables (PVs) have been demonstrated to provide assurance of
quality. MCs are the ingredients in a mixture, typically expressed as
proportions that sum to 1. PVs are factors in an experiment that do
not form any portion of the mixture, but whose settings (when
changed) can affect the responses.

Using the data resulting from a mixture-process variable (MPV)
experimental design, MPV models are developed to represent the
relationship of system performance with MCs and PVs [2]. Such
ll rights reserved.

: þ39 55 4573779.

anetto).
data-based models provide an in-depth understanding of the
problem and the basis for developing the design space and optimiz-
ing the quality of the analytical method. In this article, for the first
time in the literature, a MPV approach was used to develop a
microemulsion electrokinetic chromatography method (MEEKC) for
the quality control of a nutraceutical based on coenzyme Q10 (Q10,
CAS 303-98-0) and containing ascorbic acid (AA, CAS 50-81-7) and
folic acid (FA, CAS 59-30-3). Several methods are described for the
analysis of Q10 in pharmaceuticals and/or biological fluids [3–10].
However, to the best of our knowledge, no capillary electrophoresis
method has been reported for the simultaneous quantitation of Q10,
AA and FA in nutraceuticals. The goals of the MPV study were to
identify the design space, an optimal subregion of the design space,
and a desirable combination of MC proportions and PV settings
within the optimal subregion.

Sometimes a two-stage approach is used to address MPV
optimization problems [11–14]. In the first stage, a mixture
experiment is performed, mixture models for the responses are
fit to the experimental data, and then the mixture models are
used to develop an optimum mixture at fixed settings of the PVs
(e.g., at standard or central values of PVs). In the second stage, the
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PVs are investigated using a response surface experiment,
response surface models are fit to the resulting data, and the
models are used to develop optimal settings of the PVs for the
optimal mixture developed in the first stage. Unfortunately, this
two-stage approach to MPV experiments does not provide for
investigating interactions between MCs and PVs. For example, the
linear and/or nonlinear blending properties of the MCs may
depend on the values of PVs. When there are interactions
between MCs and PVs, the optimal MCs settings depend on the
PVs settings, and vice versa. By not studying and taking advantage
of interactions among MCs and PVs, the two-stage approach may
lead to misidentifying the design space, optimal subregion, and
selecting a sub-optimal solution of MC and PV settings. This
problem is avoided by (1) using a MPV approach that varies both
MCs and PVs simultaneously in one experiment, (2) developing
MPV models from the resulting data, and (3) using the MPV
models to identify the design space, optimal subregion, and
desirable MC proportions and PV settings within the optimal
subregion [2].
1.1. Microemulsion electrokinetic chromatography

Due to the different lipophilicity characteristics of the target
compounds, exploratory tests were performed to select the
operative mode for capillary electrophoresis. Using a suitable
pseudostationary phase made it possible to take advantage of a
double-separation mechanism based on the different electro-
phoretic mobilities of the solutes and their different partitioning
in the retentive phase [15]. Reverse polarity MEEKC (where the
anode is positioned at the outlet of the capillary and the back-
ground electrolyte (BGE) is constituted by a microemulsion) was
found to be the most suitable operative mode. The electrophoretic
runs were performed in short injection mode, where the detector
is located at the inlet side of the capillary. In these operative
conditions, the analytes and the negatively charged drops of the
microemulsion migrated towards the anode. EOF was partially
suppressed by using a high ionic strength buffer at low pH, as it
would draw the analytes towards the cathode. In the exploratory
tests, problems were encountered with the peak efficiency of Q10.
For some experimental conditions, the Q10 peak was so broad
that it could not be detected, as previously noticed [10]. For AA
and FA peaks, only certain asymmetry and limited peak broad-
ening were noticed.

In capillary electrophoresis, the operating conditions both in
terms of BGE (composition, pH, concentration, viscosity of the
buffer) and of instrumental parameters (capillary length, tem-
perature, voltage applied) can practically influence efficiency [15].
Consequently, MC proportions and the PV settings are funda-
mental to the efficiency of a MEEKC system [16].

For the MEEKC study discussed in this article, the microemul-
sion composition was expressed in terms of three MCs (phases):
buffer (B, acetate buffer), surfactant–cosurfactant (S, sodium
Table 1
Ranges of original and coded microemulsion mixture components and process variabl

Mixture component Original variables

Units Notation Lower bound

Buffer Proportion B 0.900

Surfactant:CoSurfactant Proportion S 0.050

Oil Proportion O 0.002

Process variable

Applied voltage kV V 22

Buffer concentration mM BC 95

Buffer pH pH pH 4.5
dodecyl sulphate/n-butanol in 1:4.5 ratio), and oil (O, n-octane).
The PVs investigated were applied voltage (V), buffer concentra-
tion (BC), and buffer pH (pH). Ranges of these variables studied in
the experimental design were chosen based on a series of
preliminary experiments and are shown in Table 1. Because the
PVs can affect the blending properties of the MCs, the MCs and
PVs were varied simultaneously in the MPV experimental design.

The MPV study was run considering as responses the efficiency
values of Q10 (Eff.Q10), AA (Eff.AA) and FA (Eff.FA) in order to
highlight potential similarity or differences of behavior of the
peak efficiencies of three analytes. Resolution among analytes and
analysis time were not used to represent the performances of the
MEEKC method because good selectivity was obtained and
analysis time was lower than five minutes in all the electropher-
ograms of the MPV study.

1.2. Mixture-process variable models and experimental designs

MPV experimental designs and models (that approximate the
true, unknown relationships between response variables and the
MCs and PVs) can be very large as the number of MCs and/or PVs
increases. For example, MPV designs and models are often formed
by ‘‘crossing’’ separate mixture designs and models with separate
PV designs and models. In the MEEKC study discussed in this
article, previous experience [11–14] suggested that the three MCs
may have special-cubic blending and the three PVs may have
quadratic effects. The special-cubic mixture model [2] is

yMC ¼ b1x1þb2x2þb3x3þb12x1x2þb13x1x3

þb23x2x3þb123x1x2x3þe ð1Þ

where the bi, bij, and b123 represent, respectively, the linear,
quadratic, and special-cubic blending properties of the three MCs,
and the xi represent proportions of the MCs (or pseudocomponent
transformations thereof, as discussed subsequently). The MC
proportions xi satisfy the constraint x1þx2þx3¼1, as well as the
lower and upper bounds in Table 1.

The quadratic polynomial model in the PVs is

yPV ¼ a0þa1z1þa2z2þa3z3þa12z1z2þa13z1z3

þa23z2z3þa11z2
1þa22z2

2þa22z2
3þe: ð2Þ

Crossing the models in (1) and (2) involves multiplying all
terms in one model by all terms in the other model, yielding a
(special-cubic mixture) x (quadratic PV) MPV model of the form

ySC�Q ¼ g0
1x1þg0

2x2þg0
3x3þg0

12x1x2þg0
13x1x3þg0

23x2x3þg0
123x1x2x3

þðg1
1x1þg1

2x2þg1
3x3þg1

12x1x2þg1
13x1x3þg1

23x2x3þg1
123x1x2x3Þz1

þðg2
1x1þg2

2x2þg2
3x3þg2

12x1x2þg2
13x1x3þg2

23x2x3þg2
123x1x2x3Þz2

þðg3
1x1þg3

2x2þg3
3x3þg3

12x1x2þg3
13x1x3þg3

23x2x3þg3
123x1x2x3Þz3

þðg12
1 x1þg12

2 x2þg12
3 x3þg12

12x1x2þg12
13x1x3þg12

23x2x3

þg12
123x1x2x3Þz1z2þðg

13
1 x1þg13

2 x2þg13
3 x3þg13

12x1x2þg13
13x1x3
es.

Coded variables

Upper bound Notation Lower bound Upper bound

0.948 x1 0 1

0.098 x2 0 1

0.020 x3 0 0.375

27 z1 �1 1

105 z2 �1 1

5.5 z3 �1 1
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þg13
23x2x3þg13

123x1x2x3Þz1z3þðg
23
1 x1þg23

2 x2þg23
3 x3þg23

12x1x2

þg23
13x1x3þg23

23x2x3þg23
123x1x2x3Þz2z3þðg

11
1 x1þg11

2 x2þg11
3 x3

þg11
12x1x2þg11

13x1x3þg11
23x2x3þg11

123x1x2x3Þz
2
1

þðg22
1 x1þg22

2 x2þg22
3 x3þg22

12x1x2þg22
13x1x3þg22

23x2x3

þg22
123x1x2x3Þz

2
2þðg

33
1 x1þg33

2 x2þg33
3 x3þg33

12x1x2þg33
13x1x3

þg33
23x2x3þg33

123x1x2x3Þz
2
3þe ð3Þ

In models (1), (2) and (3), the e term at the end of the model
represents experimental and measurement error (uncertainty) in
the response variable. When models are fit to data using ordinary
least squares (OLS) regression, the e errors are typically assumed
to be statistically independent and identically distributed (i.e.,
with the same mean and variance). When the errors have a
normal (Gaussian) distribution, many standard statistical data
analysis methods can be applied.

The MPV model (3) contains 7�10¼70 terms, a large number.
An experimental design to support fitting this model would
require at least 70 data points to fit the model, plus extra data
points to quantify ‘‘pure error’’ (experimental and measurement
uncertainty) and to assess model lack-of-fit (LOF). A separate
mixture design that supports fitting (1) consists of the four
vertices, four edge centroids, and overall centroid of the irregular
polyhedral region defined by the lower and upper bounds on the
MCs (in Table 1). A separate central composite design [17] in the
three PVs that supports fitting (2) contains 8 vertices, 6 axial
points, and the overall center point of the cube defined by the PV
lower and upper bounds. Crossing these designs would yield a
MPV design with 9�15¼135 points. Crossing MC and PV models
and designs yielded models and designs that were too large for
the MEEKC problem discussed in this article.

An alternative for generating MPV designs containing fewer
points is to use an optimal experimental design approach [18].
With this approach, the researcher specifies a MPV model form
that he/she believes will adequately approximate the relation-
ships between the response variables and the MCs and PVs. Then,
software (e.g., Design-Expert [19], JMP [20], Minitab [21], or SAS
[22]) is used to generate a MPV design (containing a specified
number of points) that optimizes a mathematical design criterion.
Atkinson et al. [18] discuss several optimal design criteria,
including D-optimality, I-optimality, and others. D-optimality
focuses on minimizing the uncertainties of the model coefficients,
while I-optimality focuses on minimizing the average uncertainty
of model predictions over the experimental region. The I-optimal
design approach was used for the MEEKC study discussed in this
article.

The number of points in an optimal MPV design must be at
least as large as the number of terms in the MPV model selected
for use with the optimality criterion chosen. Further, the design
should have at least 5 replicates to estimate experimental and
measurement uncertainty for each response and 10 additional
(non-replicate) points to assess the adequacy of the models fitted
to the response data.

In summary, care must be taken in (1) selecting a MPV model
that will adequately approximate the relationships between
responses and the MCs and PVs and (2) generating a MPV
experimental design that will support fitting the selected MPV
model to experimental data and assessing model adequacy. After
MPV models for the response variables have been developed and
assessed using the experimental data, the fitted models can then
be used to develop equations that specify the design space and
determine the settings of the MCs and PVs to optimize the
responses [23].
2. Experimental

2.1. Chemicals

All chemicals and reagents used were of analytical-reagent
grade with no further purification. Methanol (HPLC grade),
ethanol (HPLC grade), acetic acid, sodium dodecyl sulphate
(SDS), sodium hydrogen carbonate, n-butanol, n-octane, coen-
zyme Q10 (Q10), L-ascorbic acid (AA), folic acid (FA), fumaric acid
(FUM), and naproxen (NAP) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Proxeed NFs sachets (labeled to contain
20 mg Q10, 90 mg AA and 200 mg FA) (Sigma Tau, Roma) were
purchased locally in pharmacies and the excipient acesulfame K
(ACE) was obtained from LabService Analytica (Bologna, Italy).

Ultrapure water used for the preparation of solutions was
provided by a Simplicity 185 system (Millipore, Billerica, MA,
USA) after an electrodeionisation treatment using an Elix system
(Millipore).

2.2. Solutions, Microemulsions, and sample preparation

Standard stock solutions of Q10 (0.5 mg mL�1) and NAP
(1 mg mL�1) were prepared in ethanol and a standard stock
solution of FA (1 mg mL�1) was prepared in 0.1 M NaHCO3.
Standard stock solutions of AA (10 mg mL�1), ACE (0.1 mg mL�1),
and FUM (1 mg mL�1) were prepared in water. All solutions were
stored at 4 1C and used within one week and the Q10 and FA
solutions were protected from light. Standard working solutions
were obtained daily adding the appropriate volume of each of the
stock solutions directly in a vial and filling up to 500 mL with
water. The test concentration values were: Q10 (0.04 mg mL�1),
AA (0.2 mg mL�1), FA (0.02 mg mL�1), ACE (0.015 mg mL�1),
FUM (0.1 mg mL�1), and internal standard NAP (0.02 mg mL�1).

Microemulsions were prepared on a w/w basis by sequentially
mixing in a beaker proper amounts of buffer phase, cosurfactant
(n-butanol), surfactant (SDS) and finally oil (n-octane). Each
component was added only after reaching a complete dissolution
of the previously mixed compounds. The buffer phase of the
microemulsion system was constituted by pH 4.5–5.5 acetate
buffer in the concentration range 95–105 mM and was prepared
by mixing an adequate volume of 0.1 M acetic acid, adjusting pH
with 1 M sodium hydroxide and then filling up to volume with
water. The proportions of the microemulsion components con-
sidered during the optimization phase were 0.900�0.948 for
buffer, 0.002�0.020 for oil, and 0.050�0.098 for the surfactant/
cosurfactant mixture in 1:4.5 ratio.

With regard to sample preparation, a sachet containing 5 g of
powder was opened and 125 mg of the powder was dissolved in
1 mL ethanol to obtain a solution of 0.5 mg mL�1 for Q10,
2.25 mg mL�1 for AA, and 0.005 mg mL�1 for FA. The sample was
shaken vigorously, sonicated for 10 min, shaken again, centrifuged
and the supernatant was analyzed.

2.3. Equipment and capillary electrophoretic conditions

An ultrasonic bath (300 UltraSonik, Ney Company, Bloomfield,
USA) and a centrifuge (5415D, Eppendorf, Hamburg, Germany)
were used to sonicate and centrifuge solutions, respectively. A
Metrohm 691 pH Meter (Metrohm, Herisau, Switzerland) was
used to measure pH values.

An Agilent Technologies 3DCE system (Agilent Technologies,
Waldbronn, Germany), equipped with an on-column UV–visible
diode-array detector and an air thermostating system, was used
for all separations. The system was controlled by 3DCE ChemSta-
tion software (Rev.A.09.01, Agilent Technologies). The fused-silica
capillaries (inner diameter 50 mm, outer diameter 375 mm) were
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purchased from Composite Metal Services (Ilkley, UK) and had a
total and effective length of 48.5 and 40.0 cm, respectively. The
detection window was built-in by burning off the polyimide
coating on the capillary using The WindowmakerTM (MicroSolv,
postnova Analytica, Landsberg/Lech, Germany).
Table 2
62-point I-optimal MPV design and peak efficiency data for Q10, ascorbic acid, and fol

Design

point #

Replicate

pairs

Mixture components Process v

Buffer (B) Surfactant:

cosurfactant

(S:CoS)

Oil (O) Applied

voltage (V

1 0.9350 0.0630 0.0020 27.00

2 0.9024 0.0776 0.0200 22.00

3 0.9000 0.0889 0.0111 24.46

4 0.9000 0.0898 0.0102 22.89

5 0.9180 0.0620 0.0200 26.50

6 0.9206 0.0670 0.0124 22.00

7 1a 0.9480 0.0500 0.0020 22.00

8 0.9186 0.0792 0.0022 22.00

9 0.9000 0.0848 0.0152 24.90

10 1b 0.9480 0.0500 0.0020 22.00

11 0.9480 0.0500 0.0020 27.00

12 0.9141 0.0672 0.0187 23.58

13 2a 0.9189 0.0693 0.0118 22.00

14 0.9143 0.0657 0.0200 25.63

15 0.9090 0.0890 0.0020 24.40

16 0.9372 0.0500 0.0128 25.04

17 2b 0.9189 0.0693 0.0118 22.00

18 0.9323 0.0657 0.0020 22.00

19 0.9377 0.0500 0.0123 23.23

20 0.9102 0.0878 0.0020 23.20

21 0.9336 0.0500 0.0164 22.00

22 0.9115 0.0685 0.0200 23.40

23 0.9000 0.0980 0.0020 25.15

24 0.9000 0.0968 0.0032 27.00

25 0.9225 0.0755 0.0020 22.00

26 0.9000 0.0980 0.0020 26.63

27 0.9377 0.0500 0.0123 27.00

28 0.9258 0.0722 0.0020 23.68

29 3a 0.9000 0.0800 0.0200 27.00

30 0.9069 0.0731 0.0200 24.78

31 0.9173 0.0705 0.0122 27.00

32 0.9313 0.0667 0.0020 27.00

33 0.9000 0.0980 0.0020 22.00

34 0.9480 0.0500 0.0020 25.15

35 0.9456 0.0500 0.0044 24.73

36 0.9480 0.0500 0.0020 27.00

37 0.9000 0.0980 0.0020 25.35

38 4a 0.9300 0.0500 0.0200 27.00

39 0.9196 0.0661 0.0143 27.00

40 5a 0.9000 0.0800 0.0200 27.00

41 0.9000 0.0800 0.0200 22.00

42 0.9319 0.0500 0.0181 22.00

43 5b 0.9000 0.0800 0.0200 27.00

44 0.9480 0.0500 0.0020 22.00

45 6a 0.9159 0.0727 0.0114 27.00

46 0.9480 0.0500 0.0020 24.55

47 0.9254 0.0726 0.0020 24.60

48 0.9013 0.0967 0.0020 22.00

49 6b 0.9159 0.0727 0.0114 27.00

50 0.9480 0.0500 0.0020 22.00

51 0.9000 0.0980 0.0020 24.10

52 0.9000 0.0968 0.0032 27.00

53 3b 0.9000 0.0800 0.0200 27.00

54 0.9000 0.0892 0.0108 22.00

55 0.9113 0.0867 0.0020 23.25

56 0.9300 0.0500 0.0200 24.20

57 0.9000 0.0980 0.0020 23.80

58 0.9266 0.0534 0.0200 27.00

59 4b 0.9300 0.0500 0.0200 27.00

60 0.9480 0.0500 0.0020 27.00

61 0.9150 0.0650 0.0200 25.69

62 0.9202 0.0778 0.0020 25.88

a For not detectable peaks efficiency values were set to 10, and for measured valu
The detection wavelength was 215 nm and temperature was
set at 20 1C. The hydrodynamic injection of the sample was
performed from the detector side of the capillary (short injection)
and from the cathode to the anode, which was positioned at the
outlet side of the capillary (reverse polarity) at 50 mbar for 20 s.
ic acid.

ariables Response variables

)

Buffer conc.

(BC)

Buffer pH

(pH)

Eff.Q10a Eff.AA Eff.FA

100.80 5.50 10 3705 7092

105.00 4.50 1000 9768 5254

95.00 5.46 11187 3471 4364

99.35 4.50 9899 1459 2200

100.15 4.98 2930 3472 4106

105.00 4.89 1000 4653 10595

95.00 4.50 10 6914 8371

95.00 4.90 10 5474 12871

105.00 4.95 21444 9097 3778

95.00 4.50 10 5822 3868

95.00 5.50 10 3796 6265

97.50 4.50 10 6894 10011

95.00 5.43 10 3122 5282

95.00 5.50 4722 3428 3411

105.00 4.50 10 1706 3795

95.70 5.42 10 3277 6320

95.00 5.43 10 3552 3244

99.95 4.93 10 5210 11562

100.00 4.50 10 6375 2751

105.00 5.18 20538 4677 14453

102.15 5.50 10 3266 3199

102.15 5.39 2190 4706 9466

100.50 5.40 21771 5977 6808

103.05 4.50 1000 5990 5466

104.15 5.50 10 3938 6022

105.00 5.50 23832 6414 5137

101.74 5.01 1000 3748 8605

100.70 4.50 9497 7739 11935

96.55 4.50 1000 8977 13127

97.65 5.12 5187 4828 11108

95.00 4.67 10 4810 8234

95.00 4.55 3156 6250 8359

95.00 5.50 18239 5629 12335

98.50 4.90 10 4849 11894

105.00 5.46 1000 5836 1489

105.00 4.50 10 6720 9577

95.00 4.50 19336 1252 2352

95.00 4.50 1000 6753 6040

105.00 4.50 10 6717 8752

101.25 5.50 1000 4842 2484

95.00 5.05 3990 5519 10397

95.00 4.92 10 3670 4616

101.25 5.50 7531 4319 8889

104.85 4.80 1000 3967 8121

103.50 5.50 10 4122 8962

100.15 5.50 4385 3013 4482

95.00 5.50 10 3161 7042

105.00 4.50 12273 1023 1890

103.50 5.50 10 4198 7829

98.10 5.42 8185 2996 8555

95.05 4.89 18990 6582 10060

97.40 5.22 16829 5650 3135

96.55 4.50 1000 9026 6709

103.70 5.50 36057 7743 3529

98.50 5.50 4337 3677 8299

105.00 4.87 1000 4751 9983

100.90 5.04 24261 6600 18379

105.00 5.50 1000 4109 5808

95.00 4.50 1000 6854 4674

99.30 4.62 2244 5823 7018

101.00 4.50 1000 8638 11098

105.00 4.92 4583 5583 12551

es lower than 2000 efficiency values were all set to 1000.
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During the MPV study, the values of voltage were set according to
the experimental design (discussed subsequently).

The capillary was treated prior to its first use by flushing with
1 M NaOH for 5 min, 0.1 M NaOH for 5 min and water for 5 min.
Between runs, a rinse-cycle was applied, consisting of 1 M NaOH,
0.1 M NaOH, and water for 1 min each, and run buffer for 4 min.
min1 2 3 4 5

mAU

0

5

10

15

20

25

30

35

40

45

FUM 

ACE 
NAP 

AA 

FA 

Fig. 1. Electropherogram for design point #15 (in Table 2). Symbols as in Sec. 2.1.

Q10 peak is not detectable.

Table 3
Reduced MPV models obtained using backward elimination, starting with the 46-term M

coefficients in this two-way layout provides for assessing both how the MC blending p

Process-variable terms Mixture terms

Buffer (B) x1 S:CoS (S) x2 Oil (O) x3

ln(Eff.Q10)

1 1 9.278nnn 10.023nnn 10.057nnn

Vb z1 �2.362nnn
�0.580nnn 21.124nnn

BCb z2 1.797nnn 0.047nnn
�0.110nnn

pH z3 �1.007nnn 0.203nnn 6.344nnn

VnBC z1z2 �1.412nnn –c –

VnpH z1z3 �2.820nnn – –

BCnpH z2z3 – 0.766nnn –

V2 z1
2

�2.497nnn 0.642nnn
�5.921nnn

BC2 z2
2

�4.598nnn – 3.937nnn

pH2 z3
2 – �0.776nnn –

Eff.AA

1 1 4530.895a 6772.840a 17396.809(a)

Vb z1 92.249 ns 683.481nn –

BCb z2 928.153nn 898.219nn
�898.728 ns

pH z3 �1577.229nnn 1762.482nnn
�23896.288n

VnBC z1z2 – – –

VnpH z1z3 939.128nn
�1686.862nnn –

BCnpH z2z3 – – –

V2 z1
2 – – –

BC2 z2
2

�1131.011n – 2768.183n

pH2 z3
2 1559.750nn

�2988.315nnn 3672.356nn

(Eff.FA)0.5

1 1 98.539a 118.174a 323.101a

Vb z1 – �28.359nnn
�554.544nnn

BCb z2 �8.668 ns 8.872n 37.743 n

pH z3 �9.131nn 5.982 ns
�12.346 ns

VnBC z1z2 – 14.236nn –

VnpH z1z3 – �15.894nnn –

BCnpH z2z3 �14.873nnn 14.167nn –

V2 z1
2 – – –

BC2 z2
2 – �17.091nn –

pH2 z3
2

�24.427nn
�38.029nnn 60.689nnn

a Asterisks n, nn, and nnn denote coefficients that are statistically significant with 90

statistically significant with at least 90% confidence. It is inappropriate to consider the
b V¼applied voltage, BC¼buffer concentration.
c A dash (–) denotes that the term is not included in the model.
2.4. Calculations and software

The efficiency of the peak for each of Q10, AA, and FA was
calculated according to the formula

N¼ 5:54ðtm=w1=2Þ
2

ð4Þ

where N is the number of theoretical plates, tm is the migration
time and w1/2 is the peak width at half height [24].

Design-Expert Version 8 (DX8) [19] was used to generate the
experimental design, fit two response models, and perform other
data analyses and graphics. Matlab [25] was used to fit one
response model.
3. Results and discussion

The following subsections present and discuss (1) the experi-
mental design, (2) the MPV models for Eff.Q10, Eff.AA. and Eff.FA,
(3) interpretation of MC and PV effects on the three responses by
contour plots and perturbation plots and (4) developing the
design space and an optimal subregion, and selecting desirable
settings of the MCs (buffer, surfactant–cosurfactant, and oil) and
the PVs (applied voltage, buffer concentration, and buffer pH)
within the optimal subregion.
PV model (5) used as the basis for the experimental design. Presenting MPV model

roperties depend on the PVs and how the PV effects depend on the MCs.

BnS x1x2 BnO x1x3 SnO x2x3 BnSnO x1x2x3

0.037 ns
�7.234nnn

�4.391nnn
�19.537nnn

10.698nnn
�7.787nnn

�30.402nnn
�46.761nnn

– – – –

– – �6.740nnn –

# Terms 30

R2 0.911

R2
Adj 0.830

LOF p o 0.01

�912.128 ns
�26430.624nnn

�17091.561n –

– – – –

�5205.808nnn – 8247.271nn –
nn

�5588.994nnn 34298.718nnn 25472.302nn –

# Terms 26

R2 0.879

R2
Adj 0.795

LOF p 0.013

54.235nn
�433.213nnn

�443.817nnn 178.107 ns

71.623nn 847.693nnn 937.476nnn
�767.868nnn

– – �140.074nnn 425.292nn

– – – –

# Terms 29

R2 0.804

R2
Adj 0.638

LOF p 0.971

%, 95%, and 99% confidence, respectively. An ‘‘ns’’ denotes coefficients that are not

statistical significance of the three linear mixture terms [Cornell 2002].



Fig. 2. Predicted versus measured plots for the Eff.Q10, Eff.AA, and Eff.FA models

in Table 3.
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3.1. MPV experimental design and associated model

Based on the experimental region specified by the MC and PV
ranges (in Table 1) and preliminary testing, a MPV model was
postulated for use to generate an I-optimal MPV experimental
design. Previous experience indicated that the MCs may have up
to special-cubic blending, and that the PVs may have up to
quadratic (interaction and curvature) effects [11–14]. Crossing
these two models results in the 70-term MPV model (3), which
would have required too large of a MPV experiment for this study.
Also, the 70-term MPV model (3) includes higher-order interac-
tions between MCs and PVs that were not anticipated to be
significant. Hence, a smaller 46-term MPV model

y¼ f ðx,zÞ ¼ g0
1x1þg0

2x2þg0
3x3þg0

12x1x2þg0
13x1x3þg0

23x2x3þg0
123x1x2x3

þðg1
1x1þg1

2x2þg1
3x3þg1

12x1x2þg1
13x1x3þg1

23x2x3þg1
123x1x2x3Þz1

þðg2
1x1þg2

2x2þg2
3x3þg2

12x1x2þg2
13x1x3þg2

23x2x3þg2
123x1x2x3Þz2

þðg3
1x1þg3

2x2þg3
3x3þg3

12x1x2þg3
13x1x3þg3

23x2x3þg3
123x1x2x3Þz3

þðg12
1 x1þg12

2 x2þg12
3 x3Þz1z2þðg

13
1 x1þg13

2 x2þg13
3 x3Þz1z3

þðg23
1 x1þg23

2 x2þg23
3 x3Þz2z3þðg

11
1 x1þg11

2 x2þg11
3 x3Þz

2
1

þðg22
1 x1þg22

2 x2þg22
3 x3Þz

2
2þðg

33
1 x1þg33

2 x2þg33
3 x3Þz

2
3þe ð5Þ

was selected as the basis for generating the experimental design,
where y denotes the peak efficiency of Q10, AA, or FA; xi denotes the
L-pseudocomponent transformation of the ith MC; and zj denotes
the [�1, 1] coding of the jth PV. The codings of the MCs and PVs are
given in Section 3.2. The various ‘‘g’’ model coefficients in (5) are to
be fitted using experimental data. A subscript on a ‘‘g’’ coefficient
denotes the MCs involved in that model term, while the superscript
denotes the PVs involved in that model term. The model terms in
the first row of (5), with zero superscripts, represent the linear,
quadratic, and special-cubic blending effects of the MCs when all
PVs are at their zero coded values (i.e., their middle values). The
terms in the remaining lines of (5) represent the effects of PVs on
MC blending properties. Hence, the 46-term model in (5) allows for
(1) linear effects of all three PVs on the linear, quadratic and special-
cubic blending properties of the MCs, and (2) linear blending
properties of the MCs to be affected by the two-variable interactions
and/or quadratic curvature effects of the three PVs. The 46-term
MPV model (5) was selected for generating the MPV experimental
design with the belief that it would adequately approximate the
true, unknown relationships between the response variables
(Eff.Q10, Eff.AA, and Eff.FA), the MCs, and the PVs.

To support estimating the coefficients of the MPV model (5), to
quantify the experimental and measurement uncertainty, and to
assess model LOF for each response, it was decided that a MPV
experimental design containing 62 runs would be generated. The
basis for 62 runs was the 46 terms in the MPV model, 10 extra points
to assess model LOF, and 6 replicated points. The 62-run MPV design
was generated by DX8 [19] using the ‘‘best optimal design’’ algorithm
with the I-optimality criterion. The ‘‘best optimal design’’ algorithm
generates designs using both (1) a point-exchange algorithm to select
a design from specified candidate points, and (2) a coordinate-
exchange algorithm that does not require specifying candidate points
[18]. The ‘‘best’’ I-optimal design ended up being one that was
generated by the coordinate-exchange algorithm. The settings of
the MCs and PVs for the 62-point MPV design are shown in Table 2.

3.2. Response values and MPV models

The responses selected to measure the method performance
were peak efficiencies of Q10 (Eff.Q10), ascorbic acid (Eff.AA), and
folic acid (Eff.FA). However, significant problems in measuring
peak efficiency were observed for Q10, and to lesser degrees for
AA and FA. In particular, there was a high variability of Eff.Q10
depending on different experimental conditions, leading some-
times to such a peak broadening that Q10 could not be detected.
For such cases, Eff.Q10 was assigned a value of 10. In addition, it
was troublesome to measure Eff.Q10 when lower than 2000, so
for such cases it was assigned a value of 1000. Fig. 1 shows one
electropherogram that illustrates for one of the design points
(#15) the low efficiency of the method, which otherwise had good
selectivity and low analysis time.

The values of the Eff.Q10, Eff.AA, and Eff.FA responses for the 62-
run experimental design, including six replicate pairs of points, are
shown in Table 2. Based on the replicates, estimates of the experi-
mental and measurement standard deviations in the Eff.Q10, Eff.AA,
and Eff.FA responses are 1885, 373, and 3025, respectively. Note that
all but one of the replicate pairs for Eff.Q10 had identical assigned
values of 10 or 1000. Hence, the 1885 estimate of experimental and
measurement uncertainty may not be representative of what the
uncertainty is in higher values of Eff.Q10.
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To develop MPV models for Eff.Q10, Eff.AA, and Eff.FA, the MCs
were coded using L-pseudocomponent transformations [2]:

x1 ¼ ðB20:9Þ=ð120:920:0520:002Þ ¼ ðB20:9Þ=ð0:048Þ

x2 ¼ ðS20:05Þ=0:048

x3 ¼ ðO20:002Þ=0:048 ð6Þ

and the PVs were coded to have ranges �1rzir1, using the
transformations

z1 ¼ ðV224:5Þ=2:5

z2 ¼ ðBC2100Þ=5

z3 ¼ ðpH25Þ=0:5 ð7Þ

The L-pseudocomponent coding of the MCs reduces collinear-
ity that results from the small ranges of the components [2]. The
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Fig. 3. Contour plots using the Eff.Q10, Eff.AA, and Eff.FA MPV models over the constrain

with BC¼105 mM and V¼22 mV).
�1rzir1 coding of the PVs provides for easier interpretation of
the MPV model in (5). The portion of a MPV model containing
only MC terms represents the blending behavior of the mixture
components when the coded PVs¼0 (i.e., middle values of the
PVs). The terms with both MCs and PVs represent the effects of
changing the PVs (from their middle values) on the blending
properties of the MCs. Table 1 shows the lower and upper bounds
of the coded MCs and PVs.

For each response, the full 46-term MPV model in coded
variables (as shown in (5)) was fit to the data from the 62-point
experimental design using ordinary least squares (OLS) regression
implemented in DX8 [19]. However, many model terms were
statistically nonsignificant, and so a statistical variable selection
method (backward elimination) was used to develop reduced
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ed mixture region for two combinations of the process variables (pH¼4.5 and 5.5,
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forms of the 46-term MPV model. Acceptable models were
obtained for Eff.AA and sqrt(Eff.FA) using this approach. The
square root transformation of Eff.FA was selected based on a
Box-Cox transformation analysis of the data [17], as implemented
in DX8. The results of the Eff.AA and Eff.FA models are shown in
Table 3.

The preceding approach to MPV modeling did not yield an
acceptable model for Eff.Q10. The most likely reason for this is the
difficulty in determining Q10 peaks and because unmeasurable
and smaller Eff.Q10 values were set to either 10 or 1000 (for 36 of
the 62 design points). Such grouping and assignment of values for
two subsets of the Eff.Q10 data can be expected to cause
problems for OLS approaches to regression modeling. Hence, a
generalized linear model (GLIM) approach was used to model
Eff.Q10 [17]. A variety of link and error distributions were
investigated as part of the model selection process. A logarithm
link with Poisson error distribution were found to produce the
best model results, which are shown in Table 3.

Plots showing predicted values (using the models in Table 2)
versus measured values of the design points are shown in Fig. 2.
The R2 values of 0.913, 0.879, and 0.804 for the ln(Eff.Q10), Eff.AA,
and (Eff.FA)0.5 models, respectively, are not as high as is desirable
(e.g.,40.95). However, this was expected given the mentioned
difficulties in determining peak efficiencies. The R2 values are
high enough that a substantial fraction of the variability in the
peak efficiencies are accounted for by the MPV models in Table 3.
Hence, the models can be used (remembering their uncertainties)
to interpret effects of the MCs and PVs on the responses, based on
Fig. 4. Perturbation plots using the MPV model for Eff.Q10 to predict the effect of var

(coded 1.0), with the other process variables at their middle values (coded 0.0), for the

the differences in PVs from their middle values.
the statistically significant terms included in the models. A term is
considered statistically significant if the confidence that its
coefficient is different from zero is at least 90%. It is worthwhile
to point out that there is some danger in interpreting MCs and
PVs as having effects (e.g., MC and PV interactions, PV interac-
tions, linear vs. curvature effects of PVs) corresponding to terms
remaining in (or missing from) a MPV model. This is because high
correlations among model terms could lead to terms remaining in
a model in a certain combination when in fact it is some other
combination of variable effects that are the true explanations of
response dependence on the MCs and PVs. However, when terms
involving special-cubic blending of MCs appear or do not appear
in models, it is safe to conclude the presence/absence of special-
cubic blending. Also, terms of the form MCn(PV)2 being present or
absent support safe conclusions about whether the PV has or does
not have a curvature effect on the linear blending property of MC.
Further, graphical assessments of the models considered in the
following subsection can be used as another basis for assessing
the effects of MCs and PVs on the response variables. The models
were subsequently employed to identify the design space and the
optimal subregion of settings for the MCs and PVs.
3.3. Contour plots and perturbation plots

Contour plots of Eff.Q10, Eff.AA, and Eff.FA over the MC
constrained experimental region for each of eight lower-and-
upper-bound combinations of the PVs were generated, but for
ying each process variable from its lower bound (coded �1.0) to its upper bound

four vertices of the constrained mixture experiment region. The x-axis represents



Fig. 5. Formulation portions of the design space (shaded medium gray) and

optimal subregion (shaded black) for two selected combinations of PV conditions

(V, BC, pH): (a) Combination (23.8, 100.9, 5.04) corresponding to design point #57,

(b) combination (23, 101, 5.3) selected as desirable within the optimal subregion.

The portion of the ternary shaded light gray is outside the experimental region.
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space reasons they are provided as Supplementary Figures S1, S2
and S3, respectively. These contour plots show how changing the
MC proportions (microemulsion composition) affects each
response for the eight combinations of the PVs. For each of
Eff.Q10, Eff.AA, and Eff.FA, the contour plots differ significantly
over the eight combinations of the PVs. This indicates that the PVs
have significant effects on the blending properties of the MCs (i.e.,
the MCs and PVs have interactive effects). Fig. 3 shows two of the
eight contour plots (pH¼4.5 and 5.5 with BC¼105 mM and
V¼22 kV) for each of Eff.Q10, Eff.AA, and Eff.FA.

Perturbation plots of how variations in the PVs affect Eff.Q10 for
each of the four vertex combinations of the MC constrained
experimental region are displayed in Fig. 4. Similar plots for Eff.AA
and Eff.FA are available as Supplementary Figures S4 and S5,
respectively. A given perturbation plot shows three curves that
display the effects of varying each of the three PVs from its lower
bound to its upper bound, with the other PVs at their middle values.
Fig. 4 shows that some PVs have relatively small effects on Eff.Q10,
with some exceptions now discussed. Eff.Q10 increases as (1) pH
decreases when B (¼0.948) is at its highest level, and S (¼0.050)
and O (¼0.002) are at their lowest levels, (2) BC moves from its
middle value to either its lowest or highest values when B (¼0.900)
is at its lowest level, S (¼0.08) is at a relatively high value, and
O(¼0.02) is at its highest value, (3) V moves to its lowest value,
when B (¼0.900) and O (¼0.002) are at their lowest values and S

(¼0.098) is at its highest value. At the ME formulation B¼0.93,
S¼0.05, and O¼0.02, none of the PVs have much effect on Eff.Q10.
The different effects of the PVs for different ME formulations is
because of the interactive effects of MCs and PVs on Eff.Q10.

3.4. Design space, optimal subregion, and desirable settings

The objectives of this study were to (1) identify the design
space and optimal subregion (see Section 1), and (2) select a
desirable microemulsion formulation and PV settings that yield
optimum values of Eff.Q10, Eff.AA, and Eff.FA. Based on the visual
inspection of the electropherograms obtained in the MPV design,
an acceptable lower limit and optimum lower limit for each
response were specified:

Eff :Q10 : Acceptable lower limit¼ 11000,

Optimum lower limit¼ 20000

Eff :AA : Acceptable lower limit¼ 3500,

Optimum lower limit¼ 6000

Eff :FA : Acceptable lower limit¼ 5000,

Optimum lower limit¼ 8500 ð8Þ

The design space is specified using the acceptable lower limits
in the equations

MðEff :Q10ÞZ11000, MðEff :AAÞZ3500, and MðEff :FAÞZ5000,

ð9Þ

while the optimal subregion within the design space is given by
the equations

MðEff :Q10ÞZ20000, MðEff :AAÞZ6000, and MðEff :FAÞZ8500,

ð10Þ

where in (9) and (10) the notations M(Eff.Q10), M(Eff.AA), and
M(Eff.FA) represent the MPV models in Table 3. The design space
and optimal subregion are five-dimensional regions specified by
coded values of MCs and PVs ((x1, x2, x3, z1, z2, z3), where
x1þx2þx3¼1) used in the models. Because these regions are five
dimensional, they cannot be illustrated in their entirety. Instead,
Fig. 5 illustrates the formulation portion (in terms of x1, x2, and x3)
of the design space and optimal subregion for two selected
combinations of PV values. Fig. 5(a) is for the combination of PV
values (V, BC, pH)¼(23.8, 100.9, 5.04) that corresponds to design
point #57, the only one that satisfied all the optimal subregion
constraints. Fig. 5(b) is for the combination of PV values (23, 101,
5.3) discussed in the following paragraph.

Specific desirable settings of the MCs and PVs within the optimal
subregion (shown in terms of the coded and uncoded variables)

x1¼0 B¼0.900
x2¼1.000 S¼0.098
x3¼0 O¼0.002
z1¼-0.6 V¼23
z2¼0.2 BC¼101
z3¼0.6 pH¼5.3

were chosen inside the optimal subregion, based on practical
considerations. In particular, the low level of O made it possible to
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Fig. 6. Electropherogram for the optimal MEEKC conditions given by proportions

of the microemulsion components (buffer¼0.9000, surfactant/cosurfactant¼0.098,

oil¼0.002) and settings of the process variables (voltage¼23 kV, buffer concentra-

tion¼101 mM, buffer pH¼5.3). Symbols as in Sec. 2.1.
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reduce the cleaning procedure of the capillary and to prepare the
microemulsion in less time. A high value of S and a low level of B
were preferred in order to increase the draining power of the
negative microemulsion droplets towards the outlet of the capil-
lary. A low value of voltage allowed the generated current to be
kept lower, and finally a high value of pH was preferred to
increase the electrophoretic mobility of Q10, directed towards
the anode.

The electropherogram for the selected optimal conditions is
shown in Fig. 6, evidencing good efficiencies for all the analyte
peaks (Eff.Q10¼21018, Eff.AA¼6443, Eff.FA¼10166), which were
baseline separated in about 3 min.
4. Conclusions

For the first time in the literature, a MPV approach was used to
simultaneously optimize formulation (mixture) and process fac-
tors during the development of a MEEKC method, where the peak
efficiencies of three analytes (Q10, FA, AA) were used as
responses. The MPV approach made it possible to identify the
design space, optimal subregion, and desirable MC proportions
and PV settings within the optimal subregion.

For all the considered responses, contour plots showed that
PVs have significant effects on the blending properties of the MCs,
and perturbation plots showed the different effects of the PVs for
different microemulsion formulations. Finding interactive effects
of MCs and PVs demonstrated that the MPV approach is a very
powerful tool for method optimization, and that in general the
classical two-step optimization of mixture and process variables
should be avoided. In fact, the latter approach does not provide
for investigating interactions between MCs and PVs, thus possibly
leading to misidentifying the design space, optimal subregion,
and selecting a sub-optimal solution of MC and PV settings. On
the other side, the main drawback of the MPV approach is the
high number of experiments required. However, in this case the
experimental runs were fast and economical, thus not represent-
ing a practical problem. Both these aspects should be carefully
considered by the researcher when planning a multivariate
optimization strategy, making it necessary to take into account
the goal of the optimization and the easiness or difficulty in
finding acceptable solutions from preliminary experiments.
Appendix A. Supporting material

Supplementary data associated with this article can be found
in the online version at http://dx.doi.org/10.1016/j.talanta.2012.
03.064.
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